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ABSTRACT

We provide a purely local computation of the (elliptic) twisted (by
“transpose-inverse” ) character of the representation = = I(1) of PGL(3)
over a p-adic field induced from the trivial representation of the maximal
parabolic subgroup. This computation is independent of the theory of
the symmetric square lifting of [IV] of automorphic and admissible rep-
resentations of SL(2} to PGL{3). It leads — see [FK] — to a proof of
the (unstable) fundamental lemma in the theory of the symmetric square
lifting, namely that corresponding spherical functions (on PGL(2) and
PGL(3)) are matching: they have matching orbital integrals. The new
case in [FK] is the unstable one. A direct local proof of the fundamental
lemma is given in [V].

This work continues the paper [FK], whose notations we use. Our aim is to

prove Proposition 1 of [FK] without using Theorem 0 there. Namely we provide
a purely local computation of the twisted character of # = I(1). Our model
of 7 is that of [FK], where the twisted character x, is computed directly and
locally but only for the anisotropic twisted conjugacy class &’ (see [FK], proof of
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Proposition 1). In [FK] the value on the isotropic twisted conjugacy class § is
deduced from the global Proposition 2.4 of [IV] — recorded in [FK] as Theorem
0 — which asserts that x.(8) = —x.(¢').

While the proof of Proposition 2.4 of [IV] is independent of the results of [FK]
(Theorems 1, 2, 3, 3, which follow from Proposition 1), it is global, and so might
lead some readers to worry that a vicious circle is created. Moreover, the proof of
this global result requires heavy machinery. Here we provide a purely local proof
of Proposition 1 of [FK], and consequently make the results of [FK] independent
of Proposition 2.4 of [IV] (= Theorem 0 of [FK]).

Of course the conventional approach is to deduce the character computation of
[FK], Proposition 1, on using the global trace formula comparison ([IV]) which
is based on the fundamental lemma, proven purely locally in [V]. The novel
approach of [FK] — which we complete here — is in reversing this perspective,
and using the global trace formula to prove the (unstable) fundamental lemma
from a purely local computation of the twisted character in a special case.

Further, an independent, direct computation of the very precise character
calculation gives another assurance of the validity of the trace formula approach
to the lifting project. It will be interesting to develop this approach in other
lifting situations, especially since our technique is different from the well-known,
standard techniques of trace formulae and dual reductive pairs. A first step in
this direction was taken in our work [FZ], where the twisted — by the transpose-
inverse involution — character of a representation of PGL(4) analogous to the
one considered here, is computed. The situation of [FZ] is new, dealing with
the exterior product of two representations of GL(2) and the structure of repre-
sentations of the rank two symplectic group. Such character computations are
not yet available by any other technique. However, the computations of [FZ] —
although elementary — are involved, as they depend on the classification of [F]
of the twisted conjugacy classes in GL{4). This is another reason for the present
work, which considers the initial non trivial case of our technique — where the
computations are still simple and can clarify the method. We believe that our
methods, pursued in [FZ] in a more complicated case, would apply in quite gen-
eral lifting situations, in conjunction with, and as an alternative to the trace
formula.

Proposition 1 of [FK] asserts that if 1 is the trivial PGL(2,F)-module, 7 = I(1)
is the PGL(3,F)-module normalizedly induced from the trivial representation of
the maximal parabolic subgroup (whose Levi component is GL(2,F)), and § is
a o-regular element of PGL(3,F) with elliptic regular norm v, = N4, then
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(A(8)/B1(11)) x=(8) = £(0).
The proof of Proposition 1 in [FK] reduces this to the claim that the value at
s=0of

|4uf)*/?|u(a? — 0)|‘s/2/ |22 + uy? — 0223V 2dzdyd>
Vo

is —#(8)g/2(14 ¢~ /2 + ¢~1) (see bottom of page 499, and Lemma 2, in [FK]).

This equality is verified in [FK], p. 499, when the quadratic form z2 +uy? — 622
is anisotropic, in which case k(§) = —1 and the integral converges for all s.

Here we deal with the case where the quadratic form is isotropic, in which
case k(6) = 1, the integral converges only in some half plane of s, and the value
at s = 0 is obtained by analytic continuation.

Recall that F' is a local non-archimedean field of odd residual characteristic; R
denotes the (local) ring of integers of F'; & signifies a generator of the maximal
ideal of R. Denote by g the number of elements of the residue field R/7R of R.
By F we mean a set of representatives in R for the finite field R/m. The absolute
value on F is normalized by |7| = ¢~ '.

The case of interest is that where K = F (\/5) is a quadratic extension of F,
thus # € F* — F*2. Since the twisted character depends only on the twisted
conjugacy class, we may assume that 9] and |u| lie in {1,47!}.

0. LEMMA: We may assume that the quadratic form x? + uy® — 822 takes one
of three avatars: x% — 02 —y% 0 € R — R?; 2% — 2% + wy?; or 2% — w2% — ¢2.

Proof: (1) If K/F is unramified, then |§] = 1, thus § € RX — R*2. The norm
group Ng pK* is m?2R*. If 2% — 022 + uy? represents 0 then —u € RX. If
—1 is not a square, thus § = —1, then u is —1 (get 2% — 22 — y?) or u = 1 (get
r? — 2% + 92, equivalent case). If —1 € R*?, the case of u = 8 (22 — 2% + 6y =
O(y? + 6~ 1x% — 2?)) is equivalent to the case of u = —1. So wlog u = —1 and the
form is 22 — 022 — 42, |ub| = 1.

(2) If K/F is ramified, |§] = ¢”' and Ng/pK* = (-6)2R*%. The form
22 — 2% + uy? represents zero when —u € R*? or —u € —R*2. Then the form
looks like 2% — 822 + 0y? with v = § and |fu| = ¢~ 2, or 22 — 022 —y? with u = —1
and |fu| = ¢~!. The Lemma follows. |

We are interested in the value at s = —3/2 of the integral I,(u,8) of |22 +
uy? — 622]% over the set V® = V/ ~, where

V= {V = (x’ Y, z) € R3;max{lxlv ‘y‘v |Z|} = 1}
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and ~ is the equivalence relation v ~ av for @ € R*.
The set V0 is the disjoint union of the subsets

VO =V u,8) = Vp(u,8)/ ~,
where
Vi = Vo(u,0) = {v;max{|z|, ly|, |2} = 1, |2* + uy® — 6z°| = 1/¢"},

over n > 0, and of {v;z? + uy? — 022 = 0}/ ~, a set of measure zero.
Thus we have

I(u,8) = i q " Vol(Vf (u,8)).

n=0

THEOREM: The value of |uf|'/?I,(u,0) at s = —3/2 is —q~/2(1+ ¢~ V2 4 ¢71).

The problem is simply to compute the volumes
Vol(V,) (u,8)) = Vol(Vi (u,6))/(1 = 1/g)  (n > 0).

1. LEMMA: When 6 = ® and u = —1, thus |uf| = 1/q, we have

(1-1/q), ifn=0,
Vol(V9) = { 2¢7'(1 - 1/q) + 1/¢%, ifn=1,
2¢~"(1 - 1/q), ifn>2.

Proof: Recall that

Vo = Vo(—1,7) = {(z,y, 2); max{|z|, |y|, |2]} = 1, |2* — y* — w2?| = 1}.
Since |z| < 1, we have |w2?%| < 1, and
2 =

1=o? —y* = m2®| = 2 — ¢’| = Jo —yllr +yl.

Thus |z — y| = |z +y| = 1, and if 2| # |y|, |z + y| = max{|z|, |y|}. We split

Vo into three distinct subsets, corresponding to the cases |z| = |y| = 1; |z] = 1,
ly| < 1; and |z| < 1, |y| = 1. The volume is then

Vol(Vp) =/ / [/ ]dydwdz
l21<1 Y |zl=1 L |yl=1,|lz—y|=lo+yl=1
+/ [/ / +/ / }dyd:rdz
lz1<1 L jzl=1 i<t Jizj<1 Jjyl=1
2 1 142
=/ [/ ]dydaH——(l——):(l——).
lzl=1 L/ y|=1,|z—y|=|z+y|=1 q q q
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To consider the Vj, with n > 1, where |22 — y? — w22| = 1/q", recall that any
p-adic number a such that |a] <1 can be written as a power series in =:

[o ]
a= Zaﬂri =ao+arm+ayw? 4+ (a; €F).
i=0
In particular |a| = 1/¢™ implies that ap =a; =-+- =ap_1 = 0, and a,, # 0. If

o0 x> o<
i i i
T = E ot Y= E Yy, z= E zimt (4,5, 2 €F),
i=0 i=0 =0
then
o0 oo o0
z? = E amt, y?= E biwt, 2= E ot
i=0 i=0 i=0
where

k3

i i
a; = E Tjti-j, bi= § YiYi-j, Ci = szli—j (ai, by, ¢; € F).
i=0 =0 =0

We have -
22—yt —mt= Zfi‘lr" (fi eF),
=0

where fo = ao — bo, fi = a; —b; — ¢;1 (i > 1). Since |22 — y? — w2?| = 1/q7, we
have that fo = fi == fo_1 =0, and f,, # 0. Thus we obtain the relations
(for a, b, ¢ in the set F, which (modulo =) is the field R/x):

a()—bo:O, ai—bi—ci_1=0 (i=1,...,n—l), an—bn—cn_l#o.

Recall that together with max{|z|, |y|,|2|} = 1, these relations define the set V.
To compute the volume of V,, we integrate in the order: ...dydzdzr. From
ag — bp = 0 it follows that yo = £z, and from a; — b; — ¢;—1 (z > 1) it follows

that
i1

2YoYi = @i — Ci—1 — Zyjyi—j7
i=1

where in the case of ¢ = 1 the sum over j is empty.

Let n > 2. When ¢ = 1 we have 2zqx; — 2yoy1 — 22 = 0. So if zg = 0 (in
R/m, ie., |x| < 1), it follows that yo = 0 and 29 = 0 (i.e., |y| < 1, |z| < 1). This
contradicts the fact that max{|z|,|y|,|2|} = 1. Thus |x| = 1. In this case yo # 0
and (for n > 2) we have

Vol(V,) = /M:l /xz|51 [ / dy]dzdx,
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where the variable y is such that once written as y = yo + y17 + ya2 + - -+,
it has to satisfy yg = tz9, and y; (i = 1,...,n — 1) is defined uniquely from
a; - b; — ¢i.1 = 0, and y,, # some value defined by a, — b, — ¢,_1 # 0. Thus

when n > 2,
Vol(Vy) = 2(%)"_1(1 - é)z = 2(1-2)"

Let n = 1. When i = 1 we have 2zor; — 2yoy1 — 22 # 0. So if zg = 0
(i.e., |z| < 1), it follows that yo = 0 and zg # 0 (i.e., we have an additional
contribution from |z| < 1, |y| < 1, |2| = 1). Thus,

2 1\2 1 1
Vol(Vy) = 5(1 - 5) + q—2(1 - 5).
The Lemma follows. |

2. LEMMA: When u and 6 equal &, thus [uf| = 1/¢%, we have
1, ifn=0

Vol(V ={ ¢ (1 -1/q), ifn=1,
2¢7"(1-1/q), ifn>2.

Proof: To compute Vol(Vp), recall that
Vo = {(2,9, 2); max{lz|, |yl, |21} = L, |2* + w(y* - 2*)| = 1},

Since |y| < 1, |z| < 1, we have |22 + m(y? — 2?)| = [2%| =1, and so

Vol(Vp) = / / / drdydz =1 — l
|z|<1 Jy|<1 V|z|=1 q

To compute Vol(V,,), n > 1, recall that
Vo = {(z,y, 2); max{|z|, |y, |2[} = 1, |2* + w(y* - 2*)| = 1/¢"}.

Following the notations of Lemma 1 we write

z? +7l' Zfz flelF

where fo = ag and f; = a; + b;—1 — ¢;—1 (¢ > 1). The condition which defines V;,
isthat fo=fi = -+ = fn-1 = 0 and f,, # 0. The equation fo = 0 implies that
zo = 0 (i.e., |z| < 1). We arrange the order of integration to be ...dydzdz.
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When n > 2, since 29 = 0, fi = 0 implies that y2 — 22 = 0. Using
max{|z|, |y],|z|} = 1 we conclude that yo = +z¢ # 0 (i.e., [2] =1, |22 —y?| < 1).

Thus we have
Vol(V, / / [ / dy] zdz
lz|l<1 J)z|=1

where the variable y is such that once written as y = yo + Y17 + Y2 + -+,
it has to satisfy yo = 429, and y; (i = 1,...,n — 2) is defined uniquely from
a; +bi_1 —¢;_1 = 0, and y,-1 # some value defined by a, + bp—1 — ¢y # 0.
Thus when n > 2,

Vol(V,) = 13(5) (1 - %)2 - %(1 - 2)2

When n = 1 we have fog = 0, fi # 0. These amount to g = 0, yo # 2.
Separating the two cases zp = 0 and zg # 0, we obtain

Vol(V1) / / / dydzdx + / / dydzd
Jz]<1 J|z]<1 Jy|=1 lz|<1V]z|=1J|y2=22|=1
1 1 1 2
=‘q3(1“g)+q(1‘g)(1‘a) = q(l‘g)

The Lemma, follows. |

3. LeMMA: When K/F is unramified, thus {uf| = 1, we have

o 1, ifn=0,
Vol(V,,) = {q—n(1 —1/9)(1+1/q), ifn>1.

Proof: First we compute Vol(Vp). Recall that
Vo = {(z,y, 2)smax{|z], [y, |21} = 1, ]2® — y* - 62*| = 1}.
Since |22 — y? — 02%| < max{|z|, |y|, 2|},
Vo ={{z,y,2) € R3 2% — 9y —02% = 1}.
Making the change of variables u = z + y, v = £ — y, we obtain
Vo = {(u,v,2) € R®Juv — 022 = 1}.

Assume that |uv| < 1. Since |uv — 22| = 1, it follows that |z| = 1. The
contribution from the set juv| < 1 is

/ll =1 [/|u|<1/|v|<l /Iul 1/|v|<1]dUdvdz
=(-HE+-Dh=1a-De-).
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Assume that |uv| = 1, i.e., |u] = |v| = 1. We arrange the order of integration
as dudvdz. If |z| < 1 then |uv — 022 = |uv| = 1. If |z| = 1 we introduce
Uv,2) = {u; |u| = 1, Juv — 22| = 1}, a set of volume 1 — 2/q, and note that
the contribution from the set |uv| =1 is

/ / / dudvdz + / / / dudvdz.
J2]<1 J|pl=1J|u|=1 |z|=1 J|v|=1 JU(v,z)

The sum of the two integrals is
1 12 1\2 2 143
o0 )= 0,
q q q q q
Adding the contributions from |uv| < 1 and |uv| = 1 we then obtain

Vol(Vg) = (]11(1—5)(2——)+(1—1)3:1ﬂ1.

q q
Next we compute Vol(V,,), n > 1. Recall that

Vo = {(xs Y, Z); ma'x{lxl? |3f|3 |z|} =1, |LC2 - y2 - 922l = l/qn}
Making the change of variables v = x + ¢, v = & — y, we obtain

Vo = {(w, v, 2);max{|u + v, |lu —v],|2|} = 1, Juv — 02% = 1/q"}.

Since the set {v = 0} is of measure zero, we assume that v # 0. Then |uv—0z%| =
1/¢" implies that u = 6z2v~! + tv~1w", where |t| = 1. There are two cases.
Assume that |v] = 1. Note that if |z| = 1, then max{|u + v|,|u—v|,|2|} = 1 is

satisfied, and if |z] < 1, then (recall that n > 1)
[u] = 0220~ + tv™1w"| < max{|z?|,¢7"} < 1,

and |u +v| = |v| = 1. So |v| = 1 implies max{|u + v|, |u — v|,|2|} = 1. Further,
since |v] = 1, we have du = ¢ "dt. Thus the contribution from the set with
v =11s

1\2
/ / / dudvdz = / / / oz = (1 --)"
12]<1 J jv|=1 J juv—022|=1/¢" 12|<1 Jfu|=1 J|t|=1 q" q q

Assume that |v] < 1. Note that if [z| = 1, since |u| < 1 we have ¢™" =
|uv — 622| = |622] = 1, a contradiction. Thus |z| < 1, and in order to satisfy
max{|u + vl |u — v|,|2|} = 1, we should have |u| = 1. The contribution from the

set with |v] < 1is
/ / / dvdudz.
|2|<1 Jjul=1 Jjuv—022|=1/g"™
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We write v = 622u~! + tu~'mw", where |t| = 1, and dv = ¢ "dt. The integral

equals
2
/ / / —d dz—li(l—l).
lz]<1 J Jul=1 Jjt|=1 €" qq” q

Adding the contributions from |v| =1 and |v| < 1 we obtain

Vol(V,,) = qin(l - 3)2 + ;ql (1— 3)2 - 61;(1 - 2)2(1+ %)

The Lemma follows. [ |

This completes the proof of the theorem, so that we have provided a purely
local proof of (the character relation of) Proposition 1 of [FK]. We believe that
analogous computations can be carried out in other lifting situations, to provide
direct and local computations of twisted characters. As noted in the introduction,
a step in this direction is taken in [FZ].
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